Carbapenemase Testing for Carbapenem-Resistant Organisms (CRO) A Primer for Clinical and Public Health Laboratories #### **Contents:** | Introduction | 1 | |--|----| | Acronyms | 1 | | Table 1. Tests for Carbapenemases in Gram-Negative Bacteria | 3 | | Table 2. Features of Various Tests for Carbapenemases | 5 | | Table 3. Current CLSI and FDA-recognized Carbapenem Breakpoints | 7 | | Table 4. Potential Activities of Newer Agents for Bacteria Producing Common Carbapenemases | 7 | | Tables 5. Strategies for Testing Isolated Colonies for Carbapenemase Production and/or Carbapenemase Results Reporting | | | Table 5A. Optional Report Comments for Carbapenemase Testing | 8 | | Table 5B. Summary of Key Features of Phenotypic versus Genotypic Tests for Carbapenemases | g | | Table 6. CRO Examples | 10 | | References | 15 | #### Introduction The intent of this primer is to provide clinical and public health laboratorians with information about tests available for detection of carbapenemases among gram-negative bacteria. It does not describe when carbapenemase testing should be performed. Each facility should work with their antimicrobial stewardship team to implement a plan to detect carbapenemase-producing organisms that is appropriate for the facility and stakeholders served. Recommendations and requirements from local public health departments should be taken into consideration when developing this plan. #### Acronyms AST, Antimicrobial susceptibility test CRO, carbapenem-resistant organism CRAB, carbapenem-resistant *Acinetobacter baumannii*CRE, carbapenem-resistant *Enterobacterales*CRPA, carbapenem-resistant *Pseudomonas aeruginosa* CPO, carbapenemase-producing or carbapenemase gene-positive organism CP-CRAB or CPAB, carbapenemase-producing *Acinetobacter baumannii* CP-CRE or CPE, carbapenemase-producing *Enterobacterales* CP-CRPA or CPPA, carbapenemase-producing *Pseudomonas aeruginosa* Non-CP-CRO, non carbapenemase-producing, carbapenem-resistant organism **Note:** Not all **carbapenem-resistant organisms** are carbapenemase producers. Most carbapenemase-producing organisms will test resistant to one or more carbapenems but may test intermediate or susceptible Page 1 of 16 Version October 2022 to one or more carbapenems. Carbapenem resistance mediated by non-carbapenemase mechanisms often involves extended-spectrum beta-lactamase (ESBL) or AmpC beta-lactamase production in combination with permeability defects (e.g., porin mutations or efflux). Carbapenem-resistant organisms with these mechanisms are referred to as non-carbapenemase producing carbapenem-resistant organisms (non-CP-CRO). A phenotypic and/or genotypic test for carbapenemase MUST be performed before reporting an isolate as a carbapenemase-producing organism. CDC provides <u>antimicrobial resistance data</u> (arpsp.cdc.gov/profile/antibiotic-resistance?tab=ar-lab-network) that demonstrate the percentages of CRO that are CPO. Generally, about a third of CRE are CPE. In contrast, fewer than 5% of CRPA produce carbapenemase. CRAB are more complicated as approximately 90% harbor OXA-23 OXA-24/40 and/or OXA-58 etc., but few CRAB harbor one of the most common carbapenemase genes (KPC, NDM, VIM, IMP, OXA-48). Page 2 of 16 Version October 2022 The main methods (CLSI endorsed, or FDA cleared) for detection of carbapenemases when testing isolates, positive blood cultures and rectal swabs are listed in Table 1 along with their applicability for use with Enterobacterales, *Pseudomonas aeruginosa* and *Acinetobacter baumannii*. Table 1. Tests for Carbapenemases in Gram-Negative Bacteria | Routinely performed on ¹ | | | | | | | |--|----------|-------------------------------|-----------------|--------------------------|---------------------------|----------------------------| | Method | Isolates | Positive
blood
cultures | Rectal
Swabs | Enterobacterales | Pseudomonas
aeruginosa | Acinetobacter
baumannii | | Phenotypic (for isolates) | | | | | | | | Modified Carbapenem | yes | no | no | yes | yes | no | | Inactivation Method (mCIM) with | | | | | (mCIM only) | | | or without EDTA Carbapenem | | | | | | | | Inactivation Method (eCIM) | | | | | | | | CarbaNP ² | yes | no | no | yes | yes | no | | BioMerieux Rapidec® Carba NP | yes | no | no | yes | yes | no | | BD Phoenix™ CPO Detect | yes | no | no | yes | yes | yes | | Genotypic / Other | | | | | | | | Cepheid Xpert® Carba-R | yes | no | yes | KPC, NDM, VIM, IMP, | KPC, NDM, VIM, IMP, | KPC, NDM, VIM, IMP, | | | | | | OXA-48-like ³ | OXA-48-like | OXA-48-like | | Hardy NG-Test® CARBA 54 | yes | no | no | KPC, NDM, VIM, IMP, | KPC, NDM, VIM, IMP, | no | | | | | | OXA-48-like | OXA-48-like | | | OpGen Acuitas AMR Gene Panel | yes | no | no | KPC, NDM, VIM, IMP, | KPC, NDM, VIM, | no | | | | | | OXA-48-like, OXA-1, | OXA-1 | | | | | | | OXA-9 ⁵ | | | | Biofire® FilmArray® BCID2 Panel ⁶ | no | yes | no | KPC, NDM, VIM, IMP, | KPC, NDM, VIM, IMP, | KPC, NDM, VIM, IMP, | | | | | | OXA-48-like | OXA-48-like | OXA-48-like | | GenMark® ePlex BCID ⁶ | no | yes | no | KPC, NDM, VIM, IMP, | KPC, NDM, VIM, IMP, | KPC, NDM, VIM, IMP, | | | | | | OXA (groups 23 & 48) | OXA (groups 23 & 48) | OXA (groups 23 & 48) | | Luminex® VERIGENE gene | no | yes | no | KPC, NDM, VIM, IMP, | KPC, NDM, VIM, IMP, | KPC, NDM, VIM, IMP, | | detection ^{6,7} | | | | OXA (groups 23, 40, | OXA (groups 23, 40, | OXA (groups 23, 40, | | | | | | 48 and 58) | 48 and 58) | 48 and 58) | | Check-Points CPO for BD MAX™ | no | no | yes | KPC, NDM, VIM/IMP, | KPC, NDM, VIM/IMP, | KPC, NDM, VIM/IMP, | | | | | | OXA-48 | OXA-48 | OXA-48 | ¹ "Yes" indicates acceptable for specimen / organism group; some laboratories may validate the method for additional specimen types Page **3** of **16** Version October 2022 - ² Performs poorly for OXA-48 - ³ Gene targets as described with product label; contact manufacturer for additional information on gene variants targeted - ⁴ Phenotypic immunological assay that detects specific antigens associated with the 5 main carbapenemases - ⁵ Varies by species, check product label - ⁶ Includes organism identification targets for major gram-negative pathogens - ⁷ Acinetobacter target is Acinetobacter spp. #### Notes: This list is not exhaustive nor an endorsement of specific products. Modified Hodge Test (MHT) (PDF) (clsi.org/media/nszl4tbc/_m100_archived_methods_table.pdf) is no longer recommended by CLSI as a reliable method for carbapenemase detection. Page **4** of **16** Version October 2022 **Table 2. Features of Various Tests for Carbapenemases** | Feature Phenotypic | | | | | Genotypic | | | | | | | |---|-----------------|-------------------|------------------------------------|---------------------------------|------------------------------|---|--|--------------------------------------|------------------------|----------------------|--| | | mCIM /
eCIM | CarbaNP | bioMerieux
Rapidec®
Carba NP | BD
Phoenix™
CPO
Detect | Cepheid
Xpert®
Carba-R | Hardy
NG-Test®
CARBA 5 ¹ | OpGen
Acuitas®
AMR Gene
Panel | Biofire®
FilmArray®
BCID Panel | GenMark®
ePlex BCID | Luminex®
VERIGENE | Check-Points
Check-Direct
CPO for BD
MAX™ | | Test system | | | | | | | | | | | | | Special equipment needed | No ² | Yes (pH
meter) | No | Yes (BD
Phoenix) | Yes | No | Yes | Yes | Yes | Yes | Yes | | Kit storage temperature | NA | NA | 2-8°C | ≈20°C (RT) | 2-28°C | 4-30°C | 15-25°C
2-8°C | 15-25°C | 2-8°C | 2-30°C
-20°C | 2-25°C | | Relative cost / test | \$ | \$ - \$\$\$ | \$\$ | \$\$\$ | \$\$\$ | \$\$ | \$\$\$ | \$\$\$\$ | \$\$\$\$ | \$\$\$\$ | \$\$\$ | | Time to Result | Overnight | ≈0.5-2 hr | ≈0.5-2 hr | Overnight | ≈75 min | ≈25 min | ≈2.5 hr | ≈1 hr | ≈1.5 hr | ≈2 hr | ≈5 hr | | Relative expertise / training requirement | ++ | +++ | ++ | ++ | + | + | +++ | + | + | +++ | +++ | | Test specimen ² | | | | | | | | | | | | | Bacterial colonies | Yes No | No | No | No | | Positive blood cultures (GNR) | No Yes | Yes | Yes | No | | Rectal swabs | No | No | No | No | Yes | No | No | No | No | No | Yes | | Performance | | | | | | | | | | | | | Results and differentiates big 5 carbapenemases | No | No | No | somewhat ³ | Yes | Yes | Not all⁴ | Yes | Yes | Yes | Yes | | Allows detection of
"rare" or "new"
carbapenemases /
carbapenemase variants ⁵ | Yes | Yes | Yes | Yes | No | Impacted by weak carbapenemases (possible false negatives) | Yes | Yes | Yes | Yes | No | Yes | No | No | No | No | No | | | Yes | Yes | Yes | Yes | No NA, not applicable; gram-negative rods Page **5** of **16** Version October 2022 ¹ Phenotypic immunological assay that detects specific antigens associated with the 5 most common carbapenemases - ² "Yes" indicates intended specimen type according to test standard (e.g., CLSI) and/or FDA clearance; some laboratories may validate for other specimen types and implement as a laboratory developed test (LDT) - ³ Differentiates Ambler classes (A, B, D) - ⁴ Varies by species - ⁵ Broad detection of any carbapenemase without further differentiation. #### Notes: This list is not exhaustive nor an endorsement of specific products. Some content reflects arbitrary considerations based on experience of the authors. Page 6 of 16 Version October 2022 Table 3. Current CLSI and FDA-recognized Carbapenem Breakpoints^{1,2} | Organism Graun | Antimicrobial Agent | Antimicrobial Agent MIC (µg/ml) | | | Zone Diameter (mm) | | | |--------------------|---------------------|---------------------------------|-----|-----|--------------------|-------|-----| | Organism Group | Antimicrobial Agent | Susc | Int | Res | Susc | Int | Res | | Enterobacterales | doripenem | ≤1 | 2 | ≥4 | ≥23 | 20-22 | ≤19 | | | ertapenem | ≤0.5 | 1 | ≥2 | ≥22 | 19-21 | ≤18 | | | imipenem | ≤1 | 2 | ≥4 | ≥23 | 20-22 | ≤19 | | | meropenem | ≤1 | 2 | ≥4 | ≥23 | 20-22 | ≤19 | | Pseudomonas | doripenem | ≤2 | 4 | ≥8 | ≥19 | 16-18 | ≤15 | | aeruginosa | imipenem | ≤2 | 4 | ≥8 | ≥19 | 16-18 | ≤15 | | | meropenem | ≤2 | 4 | ≥8 | ≥19 | 16-18 | ≤15 | | Acinetobacter spp. | doripenem | ≤2 | 4 | ≥8 | ≥18 | 15-17 | ≤14 | | | imipenem | ≤2 | 4 | ≥8 | ≥22 | 19-21 | ≤18 | | | meropenem | ≤2 | 4 | ≥8 | ≥18 | 15-17 | ≤14 | ¹ CLSI M100 32nd edition (clsi.org/standards/products/free-resources/access-our-free-resources) Table 4. Potential Activities of Newer Agents for Bacteria Producing Common Carbapenemases^{1,2} | Antimicrobial Agent | Carbapenemase (Ambler Classification) | | | | | | |----------------------------------|---------------------------------------|---------|---------|---------|------------|--| | Antimicrobial Agent | KPC (A) | NDM (B) | IMP (B) | VIM (B) | OXA-48 (D) | | | Beta-lactam | | | | | | | | combination agents | | | | | | | | Ceftazidime-avibactam | Yes | No | No | No | Limited | | | Ceftolozane-tazobactam | No | No | No | No | No | | | Imipenem-relebactam ³ | Yes | No | No | No | No | | | Meropenem- | Yes | No | No | No | No | | | vaborbactam | | | | | | | | Aztreonam-avibactam ⁴ | Yes | Yes | Yes | Yes | Yes | | | Other Agents | | | | | | | | Cefiderocol | Yes | Yes | Yes | Yes | Yes | | ¹ Adapted from Tenover, FC. Front Cell Infect Microbiol. 2021. Page **7** of **16** Version October 2022 ² <u>FDA STIC</u> (Susceptibility Test Interpretive Criteria) (www.fda.gov/drugs/development-resources/antibacterial-susceptibility-test-interpretive-criteria) ² AST must be performed to confirm susceptibility as resistance to these agents can occur ³ Does not apply to the members of the family *Morganellaceae* ⁴ Not FDA approved as of 10/25/22 Tables 5. Strategies for Testing Isolated Colonies for Carbapenemase Production and/or Carbapenemase Genes and Results Reporting Table 5A reflects testing that may be done to determine if a CRO isolate is a carbapenemase producer and/or harbors a carbapenemase gene and optional comments that may be included on a laboratory report. Strategies for carbapenemase testing in a laboratory may include: - 1. No carbapenemase testing - 2. Phenotypic testing only (e.g., mCIM) - 3. Genotypic testing only (generally for KPC, NDM, VIM, IMP, OXA-48 only) - 4. Both phenotypic and genotypic testing concurrently In select settings, another strategy would be performance of a phenotypic carbapenemase test first and reflex to genotypic testing when phenotypic test is positive. Table 5A. Optional Report Comments for Carbapenemase Testing | | Phenotypic Test
mCIM ¹ | Genotypic Test
KPC, NDM, VIM,
IMP, OXA-48 ² | Optional Report Comment(s) | |-------|--------------------------------------|--|---| | No ca | arbapenemase testi | ing | | | 1A | Not done | Not done | Carbapenem-resistant [ORGANISM] isolated. | | | | | Contact laboratory if carbapenemase testing desired. | | Phen | otypic testing only | (e.g., mCIM) | | | 2A | Negative | Not done | Carbapenem-resistant [ORGANISM] isolated. Carbapenem | | | | | resistance NOT due to carbapenemase production. | | 2B | Positive | Not done | Carbapenemase-producing [ORGANISM] isolated. | | | | | Contact laboratory if carbapenemase characterization desired. | | Geno | typic testing only (g | generally for KPC, N | DM, VIM, IMP, OXA-48 only) | | 3A | Not done | Negative | Carbapenem-resistant [ORGANISM] isolated; KPC, NDM, VIM, | | | | | IMP, OXA-48 not detected. | | 3B | Not done | Positive | Carbapenemase-producing [GENE TARGET] [ORGANISM] | | | | | isolated. | | Both | phenotypic and ge | notypic testing con | currently | | 4A | Negative | Negative | Carbapenem-resistant [ORGANISM] isolated; KPC, NDM, VIM, | | | | | IMP, OXA-48 not detected. | | 4B | Negative | Positive | Carbapenemase-producing [GENE TARGET] [ORGANISM] | | | | | isolated. | | | | | Note: There may be rere esserions where a game target test is | | | | | Note: There may be rare occasions where a gene target test is | | 4C | Positive | Negative | positive but phenotypic test is negative. | | 40 | Positive | Negative | Carbapenemase-producing [ORGANISM] isolated. KPC, NDM, | | | | | VIM, IMP, OXA-48 not detected | | | | | Note: Isolate my harbor a carbapenemase gene not included in | | | | | the gene target tests or produce very large quantities of other | | | | | beta-lactamases (e.g., AmpC). | | 4D | Positive | Positive | Carbapenemase-producing [GENE TARGET] [ORGANISM] | | | | | isolated. | Page **8** of **16** Version October 2022 - ¹ Or other phenotypic test for carbapenemase production - ² Isolates usually positive for one of the gene targets; occasional isolates may be positive for more than one target Table 5B. Summary of Key Features of Phenotypic versus Genotypic Tests for Carbapenemases | Feature ¹ | Phenotypic
(mCIM) | Genotypic | |--|----------------------|-----------| | Reagents readily available to most laboratories | ٧ | | | Perform with routine laboratory equipment / | V | | | reagents | • | -1 | | Test time to result Identifies specific carbapenemase gene | | V
√ | | Likely to catch novel carbapenemase genes | V | - | | or gene variants | ٧ | | | Relatively low cost/test | V | | ¹ May vary depending on the type of phenotypic or genotypic test employed # **Carbapenemase Testing Strategy Considerations:** - 1. Decisions for carbapenemase testing strategies are best made by the clinical microbiology laboratory in consultation with the Antimicrobial Stewardship Team and Infection Control. - 2. If only AST is performed, it cannot be assumed that a CRO is a carbapenemase-producer; a result of "carbapenemase-producing" and/or a specific carbapenemase gene (KPC, NDM, VIM, IMP, OXA-48) must <u>only</u> be provided following testing for carbapenemase production and/or the presence of a carbapenemase gene. - 3. Depending on the prevalence of specific carbapenemases in a facility/region, a laboratory may choose to do a phenotypic carbapenemase test (e.g., mCIM) first on select CRO and subsequently reflex to a genotypic test only on isolates carbapenemase positive with a phenotypic test. - 4. Most genotypic tests do not target all known carbapenemase variants. Isolates that are carbapenemase positive with a phenotypic test and negative for the 5 major carbapenemase genes likely harbor an uncommon variant, uncommon carbapenemase or a previously unrecognized carbapenemase. Contact your local public health department to discuss such unusual findings to determine if further testing such as whole genome sequencing may be warranted. - 5. Even if an isolate that produces a specific carbapenemase tests susceptible to an agent that is generally targeted against the carbapenemase, resistance can occur. For example, although most *Klebsiella pneumoniae* that produce KPC are susceptible to ceftazidime-avibactam, some isolates can demonstrate resistance to ceftazidime-avibactam. 6. It is possible that a CRO may harbor more than one carbapenemase gene. Page **9** of **16** Version October 2022 #### **Table 6. CRO Examples** Scenario A. CR Enterobacter cloacae – mCIM negative Scenario B. CR Klebsiella pneumoniae – KPC positive Scenario C. CR E. coli – NDM positive Scenario D. CR *Pseudomonas aeruginosa* – VIM positive Scenario E. CR Acinetobacter baumannii [OXA-23 Positive] Scenario F. CR Klebsiella pneumoniae – KPC and NDM positive Scenario G. CR *Pseudomonas aeruginosa* – mCIM positive [GES positive] Scenario H. CR Acinetobacter baumannii – NDM positive and OXA-23 positive The following scenarios illustrate routine antimicrobial susceptibility test results that may be encountered for CRO and a few highlights about each profile. A publication by <u>Tamma et al. 2022</u> (www.idsociety.org/practice-guideline/amr-guidance) suggests antimicrobial agents for treating infections due to highly resistant gramnegative organisms. This can be used as a guide for testing specific agents as well. Scenario A. CR Enterobacter cloacae – mCIM negative | Antimicrobial Agent | MIC (μg/mL) | |-------------------------|-------------| | Amikacin | 4 S | | Ampicillin | >32 R | | Cefazolin | >32 R | | Cefepime | 4 SDD | | Ceftazidime-avibactam | ≤1/4 S | | Ceftriaxone | >32 R | | Ciprofloxacin | >4 R | | Ertapenem | >4 R | | Gentamicin | 2 S | | Meropenem | 1 S | | Piperacillin-tazobactam | >128/4 R | | Tobramycin | 2 S | | Trimethoprim- | >4/76 R | | sulfamethoxazole | 24/70 K | #### Highlights for Scenario A. - Resistance to ertapenem but susceptibility to meropenem can occur when beta-lactamases (e.g., AmpC) other than carbapenemases are produced in large quantities. This is not an unusual finding in Enterobacter species, particularly E. cloacae. - Phenotypic carbapenemase tests such as mCIM may be positive due to hyperproduction of AmpC. (Pierce et al, 2017) - Results for other drug classes can vary in isolates resistant to ertapenem but susceptible to meropenem. - On rare occasions, one of the most common carbapenemases (KPC, NDM, VIM, IMP, OXA-48) may confer resistance to ertapenem but not to other carbapenems. Page **10** of **16** Version October 2022 #### Scenario B. Klebsiella pneumoniae – KPC positive | Section of Medicina pricario | mac in a positive | |------------------------------|-------------------| | Antimicrobial Agent | MIC (μg/mL) | | Amikacin | 16 S | | Ampicillin | >32 R | | Cefazolin | >32 R | | Cefepime | >32 R | | Ceftazidime-avibactam | ≤1/4 S | | Ceftriaxone | >32 R | | Ciprofloxacin | >4 R | | Ertapenem | >4 R | | Gentamicin | 81 | | Meropenem | >4 R | | Piperacillin-tazobactam | >128/4 R | | Tobramycin | 81 | | Trimethoprim- | >4/76 D | | sulfamethoxazole | >4/76 R | # Highlights for Scenario B. - Resistant results from phenotypic testing for beta-lactams shown here are consistent for a KPC producer, however, resistance mechanisms other than KPC may produce similar phenotypic results. - Most, but not all, isolates that produce KPC, a serine carbapenemase, are susceptible to ceftazidimeavibactam. - Other beta-combination agents that may warrant testing against isolates harboring serine carbapenemases include imipenem-relebactam and meropenem-vaborbactam. _____ # Scenario C. E. coli – NDM positive | Antimicrobial Agent | MIC (μg/mL) | |-----------------------------------|-------------| | Amikacin | >64 R | | Ampicillin | >32 R | | Cefazolin | >32 R | | Cefepime | >32 R | | Ceftazidime-avibactam | >16/4 R | | Ceftriaxone | >32 R | | Ciprofloxacin | >4 R | | Ertapenem | >4 R | | Gentamicin | >16 R | | Meropenem | >4 R | | Piperacillin-tazobactam | >128/4 R | | Tobramycin | >16 R | | Trimethoprim-
sulfamethoxazole | >4/76 R | #### Highlights for Scenario C. Resistant results from phenotypic testing for beta-lactams shown here are consistent for a NDM producer, however, resistance mechanisms other than NDM may produce similar phenotypic results. Page **11** of **16** Version October 2022 - Isolates that produce NDM, a metallo-beta-lactamase, are resistant to ceftazidime-avibactam, imipenem-relebactam and meropenem-vaborbactam. - Special testing for aztreonam-avibactam may be warranted.[Bhatnagar, 2021; <u>AR Lab Network ExAST</u> (www.cdc.gov/drugresistance/ar-lab-networks/domestic/expanded-ast.html]. ## Scenario D. *Pseudomonas aeruginosa* – VIM positive | Antimicrobial Agent | MIC (μg/mL) | |-------------------------|-------------| | Amikacin | >64 R | | Cefepime | >32 R | | Ceftazidime | >32 R | | Ceftolozane-tazobactam | >16/4 R | | Ciprofloxacin | >4 R | | Gentamicin | >16 R | | Meropenem | >4 R | | Piperacillin-tazobactam | >128/4 R | | Tobramycin | >16 R | ## **Highlights for Scenario D.** - Most CRPA are carbapenem resistant by mechanisms other than carbapenemase production. - Intermediate or resistant results for ceftolozane-tazobactam and also cefepime and ceftazidime are a clue that a *P. aeruginosa* isolate may produce a carbapenemase. (Vallabhaneni, 2021) - The most common carbapenemase reported in the USA for *P. aeruginosa* is VIM - CRPA are resistant to newer beta-lactam combination agents including imipenem-relebactam and ceftazidime-avibactam in addition to ceftolozane-tazobactam. ----- # Scenario E. *Acinetobacter baumannii* – [OXA-23 positive] | Antimicrobial Agent | MIC (μg/mL) | |-----------------------------------|-------------| | Amikacin | >64 R | | Cefepime | >32 R | | Ceftazidime | >32 R | | Ciprofloxacin | >4 R | | Gentamicin | >16 R | | Meropenem | >4 R | | Minocycline | 15 | | Piperacillin-tazobactam | >128/4 R | | Tobramycin | >16 R | | Trimethoprim-
sulfamethoxazole | >4/76 R | ## Highlights for Scenario E. - Most phenotypic tests for carbapenemase production are not reliable for CRAB. - Most CRAB produce a carbapenemase, usually OXA-23, a variant which is not included in most commercially available molecular test kits for carbapenemases. OXA-23 was detected with additional molecular testing. - The only OXA gene target in most commercially available molecular test kits is OXA-48, a gene which is uncommon in *A. baumannii* Page 12 of 16 Version October 2022 ## Scenario F. Klebsiella pneumoniae – KPC and NDM positive | Antimicrobial Agent | MIC (μg/mL) | |-------------------------|-------------| | Amikacin | 32 I | | Ampicillin | >32 R | | Cefazolin | >32 R | | Cefepime | >32 R | | Ceftazidime-avibactam | >16/4 R | | Ceftriaxone | >32 R | | Ciprofloxacin | >4 R | | Ertapenem | >4 R | | Gentamicin | >16 R | | Meropenem | >4 R | | Piperacillin-tazobactam | >128/4 R | | Tobramycin | >16 R | | Trimethoprim- | >4/76 R | | sulfamethoxazole | | ## Highlights for Scenario F. - Resistant results from phenotypic testing for beta-lactams shown here are consistent for a NDM producer and it would be difficult to suspect the concomitant presence of KPC from this AST profile. - Isolates that produce NDM, a metallo-beta-lactamase, are resistant to ceftazidime-avibactam, imipenem-relebactam and meropenem-vaborbactam. - Special testing for aztreonam-avibactam is not warranted when a serine carbapenemase (e.g., KPC) is present together with a metallo-beta-lactamase (e.g., NDM). ----- # Scenario G. *Pseudomonas aeruginosa* – mCIM positive and [GES positive] | Antimicrobial Agent | MIC (μg/mL) | |-------------------------|-------------| | Amikacin | >64 R | | Cefepime | >32 R | | Ceftazidime | >32 R | | Ceftolozane-tazobactam | >16/4 R | | Ciprofloxacin | >4 R | | Gentamicin | >16 R | | Meropenem | >4 R | | Piperacillin-tazobactam | >128/4 R | | Tobramycin | >16 R | #### **Highlights for Scenario G.** - Most CRPA are carbapenem resistant by mechanisms other than carbapenemase production. - Intermediate or resistant results for ceftolozane-tazobactam and also cefepime and ceftazidime are a clue that a *P. aeruginosa* isolate may produce a carbapenemase. (Vallabhaneni, 2021) - Carbapenemases such as GES may be found in *P. aeruginosa* but this target is not included in most commercially available molecular test kits for carbapenemases. GES was detected with additional molecular testing. Page 13 of 16 Version October 2022 ## Scenario H. CR *Acinetobacter baumannii* – NDM positive and [OXA-23 positive] | Antimicrobial Agent | MIC (μg/mL) | |-----------------------------------|-------------| | Amikacin | >64 R | | Cefepime | >32 R | | Ceftazidime | >32 R | | Ciprofloxacin | >4 R | | Gentamicin | >16 R | | Meropenem | >4 R | | Minocycline | >8 R | | Piperacillin-tazobactam | >128/4 R | | Tobramycin | >16 R | | Trimethoprim-
sulfamethoxazole | >4/76 R | # Highlights for Scenario H. - Most phenotypic tests for carbapenemase production are not reliable for CRAB. - Most CRAB produce a carbapenemase, usually OXA-23, a variant which is not included in most commercially available molecular test kits for carbapenemases. OXA-23 was detected with additional molecular testing. - The only OXA gene target in most commercially available molecular test kits is OXA-48, a gene which is uncommon in *A. baumannii*. • Other non-OXA carbapenemases (e.g., NDM) are uncommon in A. baumannii Page 14 of 16 Version October 2022 #### References Bhatnagar A, S Boyd, S Sabour et al. 2021. Aztreonam-Avibactam Susceptibility Testing Program for Metallo-Beta-Lactamase-Producing Enterobacterales in the Antibiotic Resistance Laboratory Network, March 2019 to December 2020. Antimicrob Agents Chemother. 65(8): e00486-21. doi.org/10.1128/AAC.00486-21. <u>CDC Antimicrobial Resistance Lab Network ExAST Testing</u> (Aztreonam-Avibactam) (www.cdc.gov/drugresistance/ar-lab-networks/domestic/expanded-ast.html) <u>CDC Antimicrobial Resistance and Patient Safety Portal</u> (arpsp.cdc.gov/profile/antibiotic-resistance?tab=ar-lab-network) CLSI. 2022. Performance Standards for Antimicrobial Susceptibility Testing, M100 32nd Edition. Clinical and Laboratory Standards Institute, Wayne, PA. Pierce VM, Simner PJ, Lonsway DR et al. 2017. Modified Carbapenem Inactivation Method for Phenotypic Detection of Carbapenemase Production among Enterobacteriaceae. J Clin Microbiol. 55:2321-2333. doi.org/10.1128/JCM.00193-17. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Infectious Diseases Society of America **2022**; Version 1.1. Available at www.idsociety.org/practice-guideline/amr-guidance/. Accessed 26 OCT 2022. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant *Acinetobacter baumannii*, and *Stenotrophomonas maltophilia* Infections. Infectious Diseases Society of America **2022**; Version 2.0. Available at www.idsociety.org/practice-guideline/amr-guidance-2.0/. Accessed 26 OCT 2022. Tenover FC. 2021. Using Molecular Diagnostics to Develop Therapeutic Strategies for Carbapenem-Resistant Gram-Negative Infections. Front Cell Infect Microbiol. 11:715821. doi.org/10.3389/fcimb.2021.715821. Vallabhaneni, S, JY Huang, JE Grass et al. 2021. Antimicrobial Susceptibility Profiles to Predict the Presence of Carbapenemase Genes among Carbapenem-Resistant *Pseudomonas aeruginosa* Isolates. J Clin Microbiol. 19;59(6):e02874-20. doi.org/10.1128/JCM.02874-20. ## **Additional Resources:** - 1. <u>CDC Antimicrobial Resistance Lab Network</u> (www.cdc.gov/drugresistance/laboratories.html) - CDPH/LACDPH "Testing for Carbapenemase Production Among Carbapenem-Resistant Organisms: When and How?" 10/27/22 <u>Webinar Slides</u> (PDF) (www.cdph.ca.gov/Programs/CHCQ/HAI/CDPH%20Document%20Library/CPO_webinar_102722.pdf) and Webinar Recording (youtu.be/I6LPBB9EQ8c) - 3. <u>CLSI Outreach Working Group Newsletters</u> (clsi.org/meetings/susceptibility-testing-subcommittees/newsletter-archives/) - 4. <u>LACDPH MDRO Newsletters for Laboratorians</u> (publichealth.lacounty.gov/acd/Diseases/NMDRO.htm) Page 15 of 16 Version October 2022 - 5. Sabour S, JY Huang, A Bhatnagar et al. 2021. Detection and Characterization of Targeted Carbapenem-Resistant Health Care-Associated Threats: Findings from the Antibiotic Resistance Laboratory Network, 2017 to 2019. Antimicrob Agents Chemother. 65:e01105-21. doi.org/10.1128/AAC.01105-21 - 6. Tamma, PD, KE Goodman, AD Harris et al. 2017.Comparing the Outcomes of Patients with Carbapenemase-Producing and Non-Carbapenemase-Producing Carbapenem-Resistant *Enterobacteriaceae* Bacteremia. Clin Infect Dis. 64:257-264. doi.org/10.1093/cid/ciw741 - 7. Tamma, PD and PJ Simner. 2018. Phenotypic Detection of Carbapenemase-Producing Organisms from Clinical Isolates. J Clin Microbiol. 56: e01140-18. doi.org/10.1128/JCM.01140-18 ## **Acknowledgements** Janet A. Hindler Microbiologist Los Angeles County Department of Public Health Page 16 of 16 Version October 2022